NEXPTIME
Translation
Find a translation for NEXPTIME in other languages:
Select another language:
- - Select -
- 简体中文 (Chinese - Simplified)
- 繁體中文 (Chinese - Traditional)
- Español (Spanish)
- Esperanto (Esperanto)
- 日本語 (Japanese)
- Português (Portuguese)
- Deutsch (German)
- العربية (Arabic)
- Français (French)
- Русский (Russian)
- ಕನ್ನಡ (Kannada)
- 한국어 (Korean)
- עברית (Hebrew)
- Gaeilge (Irish)
- Українська (Ukrainian)
- اردو (Urdu)
- Magyar (Hungarian)
- मानक हिन्दी (Hindi)
- Indonesia (Indonesian)
- Italiano (Italian)
- தமிழ் (Tamil)
- Türkçe (Turkish)
- తెలుగు (Telugu)
- ภาษาไทย (Thai)
- Tiếng Việt (Vietnamese)
- Čeština (Czech)
- Polski (Polish)
- Bahasa Indonesia (Indonesian)
- Românește (Romanian)
- Nederlands (Dutch)
- Ελληνικά (Greek)
- Latinum (Latin)
- Svenska (Swedish)
- Dansk (Danish)
- Suomi (Finnish)
- فارسی (Persian)
- ייִדיש (Yiddish)
- հայերեն (Armenian)
- Norsk (Norwegian)
- English (English)
Definition
What does NEXP mean?
- NEXPTIME
- In computational complexity theory, the complexity class NEXPTIME (sometimes called NEXP) is the set of decision problems that can be solved by a non-deterministic Turing machine using time 2 n O ( 1 ) {\displaystyle 2^{n^{O(1)}}} . In terms of NTIME, N E X P T I M E = ⋃ k ∈ N N T I M E ( 2 n k ) {\displaystyle {\mathsf {NEXPTIME}}=\bigcup _{k\in \mathbb {N} }{\mathsf {NTIME}}(2^{n^{k}})} Alternatively, NEXPTIME can be defined using deterministic Turing machines as verifiers. A language L is in NEXPTIME if and only if there exist polynomials p and q, and a deterministic Turing machine M, such that For all x and y, the machine M runs in time 2 p ( | x | ) {\displaystyle 2^{p(|x|)}} on input ( x , y ) {\displaystyle (x,y)} For all x in L, there exists a string y of length 2 q ( | x | ) {\displaystyle 2^{q(|x|)}} such that M ( x , y ) = 1 {\displaystyle M(x,y)=1} For all x not in L and all strings y of length 2 q ( | x | ) {\displaystyle 2^{q(|x|)}} , M ( x , y ) = 0 {\displaystyle M(x,y)=0} We know P ⊆ NP ⊆ EXPTIME ⊆ NEXPTIMEand also, by the time hierarchy theorem, that NP ⊊ NEXPTIMEIf P = NP, then NEXPTIME = EXPTIME (padding argument); more precisely, E ≠ NE if and only if there exist sparse languages in NP that are not in P.
Embed
Citation
Use the citation below to add this abbreviation to your bibliography:
"NEXP." Abbreviations.com. STANDS4 LLC, 2021. Web. 11 Apr. 2021. <https://www.abbreviations.com/term/1841850>.