What does XPIC mean in IEEE?

This page is about the meanings of the acronym/abbreviation/shorthand XPIC in the Academic & Science field in general and in the IEEE terminology in particular.

Cross-Polarization Interference Cancelation

A technology used in the case of the Co-Channel Dual Polarization (CCDP) to eliminate the cross-connect interference between two polarization waves in the CCDP.

Academic & Science » IEEE

Rate it:5.0 / 1 vote

Submitted by JP03 on February 24, 2012

Translation

Find a translation for Cross-Polarization Interference Cancelation in other languages:

Select another language:

  • - Select -
  • 简体中文 (Chinese - Simplified)
  • 繁體中文 (Chinese - Traditional)
  • Español (Spanish)
  • Esperanto (Esperanto)
  • 日本語 (Japanese)
  • Português (Portuguese)
  • Deutsch (German)
  • العربية (Arabic)
  • Français (French)
  • Русский (Russian)
  • ಕನ್ನಡ (Kannada)
  • 한국어 (Korean)
  • עברית (Hebrew)
  • Gaeilge (Irish)
  • Українська (Ukrainian)
  • اردو (Urdu)
  • Magyar (Hungarian)
  • मानक हिन्दी (Hindi)
  • Indonesia (Indonesian)
  • Italiano (Italian)
  • தமிழ் (Tamil)
  • Türkçe (Turkish)
  • తెలుగు (Telugu)
  • ภาษาไทย (Thai)
  • Tiếng Việt (Vietnamese)
  • Čeština (Czech)
  • Polski (Polish)
  • Bahasa Indonesia (Indonesian)
  • Românește (Romanian)
  • Nederlands (Dutch)
  • Ελληνικά (Greek)
  • Latinum (Latin)
  • Svenska (Swedish)
  • Dansk (Danish)
  • Suomi (Finnish)
  • فارسی (Persian)
  • ייִדיש (Yiddish)
  • հայերեն (Armenian)
  • Norsk (Norwegian)
  • English (English)

Definition

What does XPIC mean?

XPIC
XPIC, or cross-polarization interference cancelling technology, is an algorithm to suppress mutual interference between two received streams in a Polarization-division multiplexing communication system. The cross-polarization interference canceller (known as XPIC) is a signal processing technique implemented on the demodulated received signals at the baseband level. It is typically necessary in Polarization Division Multiplexing systems: the data sources to be transmitted are coded and mapped into QAM modulating symbols at the system's symbol rate and upconverted to a carrier frequency, generating two radio streams radiated by a single dual-polarized antenna (see feed pattern of Parabolic antenna). A corresponding dual-polarized antenna is located at the remote site and connected to two receivers, which downconvert the radio streams into baseband signals (BB H, BB V). This multiplexing/demultiplexing technique is based on the expected discrimination between the two orthogonal polarizations (XPD): an ideal, infinite XPD of the whole system guarantees that each signal at the receivers contains only the signal generated by the corresponding transmitter (plus any thermal noise); any real, finite, level of XPD instead manifests itself as a partial recombination between the two signals, so that the receivers observe an interference due to the cross-polarization leakage. Some of the factors causing such cross-polarization interference are listed in Polarization-Division Multiplexing. As a practical consequence, at the receiving site the two streams are received with a residual mutual interference. In many practical cases, especially for high-level M-QAM modulations, the communication system cannot tolerate the experienced levels of cross-polarization interference and an improved suppression is necessary. The two received polarizations at the antenna outputs, normally linear horizontal H and vertical V, are routed each to a receiver whose baseband output is further processed by an ad-hoc cross-polarization cancelling scheme, commonly implemented as a digital stage. The XPIC algorithm attains the correct reconstruction of H by summing V to H to cancel any residual interference, and vice versa. The cancelling process is typically implemented using two blocks: a baseband equalizer and the baseband XPIC. The output from the latter is subtracted from the former and then sent to the decision stage, responsible for yielding the estimation of the data stream. The equalization and XPIC blocks are normally adaptive for a correct tracking of the time-variant channel transfer function: XPIC must provide a shaping of the received cross signal equal to the portion of the cross interference affecting the main one. The feedback control to drive the adapting criteria comes from the measure of the residual error across the decision block. In the example, both blocks are based on the typical structure of the Finite Impulse Response digital filter and whose the coefficients are not fixed, but adapted to minimize a suitable functional J {\displaystyle J} while multiple delays D {\displaystyle D} act on the input signal.

see more »

Embed

Citation

Use the citation below to add this abbreviation to your bibliography:

Style:MLAChicagoAPA

"XPIC." Abbreviations.com. STANDS4 LLC, 2024. Web. 1 May 2024. <https://www.abbreviations.com/term/1395324>.

Discuss this XPIC abbreviation with the community:

0 Comments

    Browse Abbreviations.com

    Free, no signup required:

    Add to Chrome

    Get instant explanation for any acronym or abbreviation that hits you anywhere on the web!

    Free, no signup required:

    Add to Firefox

    Get instant explanation for any acronym or abbreviation that hits you anywhere on the web!

    Quiz

    The ultimate acronym test

    »
    SAD
    A Season Affective Disorder
    B Syndromes And Diseases
    C Syringe Affected and Deteriorated
    D Save And Drive